推广大师
 
- 最后登录
- 2021-7-9
- 注册时间
- 2018-4-10
|
自动泊车是利用车辆周身搭载的传感器,测量车身与周围环境之间的距离和角度,通过数据分析和操作控制,实现停车入位。它主要依靠超声波雷达。
与自动泊车不同,自主泊车又称自动(主)代客泊车,涉及到无人驾驶技术,需在最后一公里内按照规划好的路线进行行驶。实现自主泊车需要更多的传感器、更复杂的感知、定位、规划等技术,还需要车联网、车场标准化建设以及数据互通。
也就是说,自主泊车面对的环境更复杂,比如很窄的停车位、摄像头有雨水,甚至碰到铁丝网等极端情况。
自主泊车所面临的挑战
停车场设备生产商科立德表示:“以前业界对自主泊车没有统一的定义,主机厂商有的称为记忆式泊车、训练式泊车,随着与主机厂的不断讨论和交流,直到去年推出自主泊车1.0,大家才形成了统一的认知。”
值得注意的是,现在面临的核心问题,包括自主泊车的成本与安全、停车场内部轨迹规划、车位探测与识别的精准度和泊车入位过程控制等。
1、成本与安全
成本方面,对于共享汽车而言,目前正在运营大都是新能源汽车,造价没有私家车高。如果在共享汽车上安装昂贵的自主泊车设备,无论是主机厂还是分时租赁运营方都无法承担。大规模量产更是遥遥无期。
另外安全方面,目前绝大多数自动驾驶公司出身于AI圈子,算法对他们来说没有任何问题,但对开发完整产品的经验不足,而汽车又是一个极其特殊的产品,跟安全息息相关。2017年的谷歌自动驾驶安全报告清楚表明,安全必须从方法论开始,要对各种可能发生的危害场景进行分析,然后结合多种方法进行大量测试,最后才能投入商用。
2、自主泊车的技术挑战
停车场环境
停车场GPS信号弱、地面反光严重、建筑重复度大、光线变化大,而且白色的墙面缺少必要的纹理信息,这些都对算法和传感器存在极强的挑战。
停车位识别
过去的自动泊车,司机可以识别停车位。现在车辆必须自己做出判断,甚至要判断出车位上是否有锥桶或者开启的地锁,对车辆识别提出了更高要求。
科立德表示,考虑到复杂性,自主泊车会尽量把摄像头、超声波雷达以及毫米波雷达的感知融合在一起进行车位检测。
路径规划
自主泊车的路径规划主要有两种,一种是人为制定路径,另外一种是自动规划路径。其中自动规划路径需要先输入停车位空间的几何形状,然后系统会根据汽车动力学模型和碰撞条件约束,采用不同的控制算法实现路径规划。
面对复杂的停车场环境,如道路狭窄、急转弯较多,或是出现道路占用,自主泊车要求具备更精确的运动规划和感知定位能力。
控制泊车入位过程
泊车过程中,除了要面对水平、垂直或斜向等不同类型的停车位,还有可能遇到停车位附近的减速带、斜坡和路沿等障碍物。
因此,泊车入位时,对车身姿态控制精度要求非常严格,需要加强车辆的实时控制,确保环境数据和路径规划及时更新。
解决自主泊车问题的策略
1、感知
其实,高速场景相对单一,干扰小,在不考虑换道的时候,感知重点在前方远处;而低速场景,驾驶员需要时刻观察周围的环境以及各个视角。可以简单定性地认为,感知的距离和车速成正比,感知的角度和车速成反比。
在智能停车场设备的选择上,四个环视鱼眼摄像头+5个高分辨率的毫米波雷达+12个超声波雷达可满足低速场景下自主泊车的需求。
#鱼眼摄像头停车场检测
#环视拼接所生成的俯视视角
#道路上的实体检测
2、高精度定位
对于自主泊车而言,车辆只有明确自身的精确位置才能决定其行驶方向。但是目前大多数停车场还没有高精度地图数据,针对此现象,纵目科技通过用户的车辆并利用SLAM技术构建小范围的地图。由于室内停车场没有GPS信号,定位只能依靠其他手段,纵目采取多传感器融合的方式,可以适用于不同场景,具备更好的通用性和稳定性。
除此之外,科立德还展示了利用交通标志牌进行定位的感知能力。
#道路交通牌的识别
目前出行行业正处于破茧成蝶阶段,有一系列问题亟待解决,只有各方积极合作,整个出行行业才能突破盈利临界点,实现快速发展。总之,要想运用低成本传感器实现高水平的感知和定位能力,必须具备足够的传感器融合能力,包括软硬件、融合算法以及完善的开发验证流程。
停车场设备:www.kiledo.com
|
|